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The problem of calculating approximate wave functions for an excited state, which is not 
the lowest of a symmetry species, has been investigated for the first excited a-state of the Hel l  +~ 
ion. The results of calculations using explicitly orthogonalized variational trial functions are 
compared with results based on the linear combination of molecular orbitals (LCMO) procedure, 
and with the exact values. Our values of the electronic energy and of the dipole moment are in 
good agreement with the exact values. 

Das Problem tier Berechnung eines angeregten Zustands, der nicht der niedrigste seiner 
Rasse ist, wird am Beispiel des ersten augeregten a-Zustands yon HeIt  +2 diskuticrt. Energien, 
Dipolmomente und ~rbergangsmomente, erhalten mit niehtorthogonalisierten und ortho- 
gonalisierten VariationsstSrungsfunktionen 0. und 1. Ordnung und mit LCMO-Funktionen, 
werden mit den exakten Werten verglichen. 

On 6tudie le probl~me du ealeul d'une fonotion d'onde approch6e pour an 6tat exeit6 qui 
n'est pas le plus bas pour sa elasse de sym6trie, sur l'exemple du premier 6tat a excit6 de 
l'ion Hel l  +~. Les r6sultats du ealcul par utilisation de fonctions d'essai variationnelles ex- 
plicitement orthogonalis6es sent compar6s ~ ceux fondus sur un proc6d6 de combinaison 
lin6ah'e des orbitales mol6culaires (LCMO) et aux valeurs exaetes. Nos valeurs pour l'6ner- 
gie 61eetronique et le moment dipolaire sent en ben accord avee les valeurs exactes. 

1. Introduction 

I n  some recent  work  [4, 5, 6 ( t ,  2, 3)] we have  descr ibed a va r i a t i on -pe r tu rba -  
t ion  p rocedure  for ca lcula t ing  accura te  a p p r o x i m a t e  molecu la r  orb i ta l s  for a 
n u m b e r  of  s ta tes  of  H + and  Hel l+2.  Our p rocedure  consists of  two par ts .  F i r s t ,  
we select  according to  the  p resc r ip t ion  of  D ~ G ~ r  and  LEwis  [7] a t w o - c e n t r e  
a p p r o x i m a t e  funct ion  ~0(~) say,  of  uni ted  atom t ype ,  which conta ins  an  ad jus t ab le  
charge p a r a m e t e r  c~ to  be chosen la ter .  This  s ing le -paramete r  funct ion  serves as 
the  zero-order  (unper turbed)  a p p r o x i m a t i o n  of  conven t iona l  Rayle igh-SchrSdinger  
p e r t u r b a t i o n  theory ,  and  we calcula te  the  f i rs t -order  correc t ion  ~1(~) say,  d i rec t ly .  
W i t h  the  zero- a n d  f i rs t -order  funct ions  ~v0(~ ) and  Wl(~) known,  we nex t  cons t ruc t  
a t w o - p a r a m e t e r  va r i a t i ona l  t r i a l  funct ion,  

V~t(~, 7) = ~0(~) + ~ ~1(~) (1) 

and  seek the  o p t i m u m  values  o f  the  charge p a r a m e t e r  ~ and  the  l inear  p a r a m e t e r  
7. 

* Present address: Department of Physical Chemistry, The Hebrew University, Jerusalem, 
Israel. 
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Our previous calculations were concerned with states which are the lowest of 
some symmet ry ,  so tha t  the choice of  parameters  according to the usual variat ional  
criterion has always led to calculated (approximate) energies which are upper  
bounds on the exact  energies of  the corresponding states. For  excited states, the 
variat ional  procedure requires modification, whereas the choice of  ~po(~) and the 
calculation of  yJ1(cr proceeds as before. 

2. The 2 p a  State 

For  the 2pa state, we choose the (unnormalized) trial function 

W~ (2p~) = Zo(B) + ZI(B) (2) 

where g0(B) is the uni ted a tom approximat ion 

g0(B) = 2~ exp ( -  BR,~) = ~ exp ( -  q)~), say. (3) 

Here, as in our earlier work, the internuclear separation is 2R a.u. while ~ and 
are the usual confocal elliptic coordinates [4]. The calculation ofgl(B ) now proceeds 
exact ly as for the 2pau state of  H + [4] and we find 

The coefficient a appearing in Eq.  (4) is determined f rom the normalizat ion 
condition 

(Z~(B) I Z0(B)} = 0 ,  (5) 

and the remaining coefficients are listed in Table 1. This solution differs f rom the 
corresponding solution for the 2pau state of H + only in the terms linear in ~, which 
arise directly f rom the lack of  nuclear s y m m e t r y  in I-IeH +*. 

Table 1. Values o/the Constants in Eq. (d) 

R 
b = - -  

2 
R 
2 

1 
d = ~ ( q 2  _ 2 E  1 R  2) 

e = [6 E1 R~(5 - q~) + 45 qR + 2 q~(4 q~ - 15)]/20 q5 

/ = E1 2Wq 

g = - 2  qe 

h = [2 E1 B2(7 qz + 15) + 15 qR(2 q~ + 3) - 6 q~(2 q2 + 5)]/t0 qa 

where q = f i r  and E 1 is the first order energy 

3. O r t h o g o n a l i t y  

The exact  wave functions ~r/o and ~1  for the l sa  and 2pa states respectively, 
satisfy 

(T~ 1} = 0 (6a) 
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and 

where H is the Hamfltouian of the system. Although the trial function T~ of Eq. (2) 
for the 2p~ state and the corresponding trial function, namely 

T~(isa) = W0(cr + V ~1(~) (7) 

for the lsa state [6 (i)] do not satisfy these relations, the united atom approxima- 
tions ~0(~) and Zo(8) are orthogonal for all values of ~ and 8, but  it is easily verified 
that  <~0 ] H ]Z0> is not zero. 

4. Energy Calculations with an Unorthogonalized 2pa State Wave Function 

I f  y~o(cr were a good approximation to the exact ground-state eigenfunction 
T ~ we should expect reasonable energy values for the 2pa state to result from 
calculations using Z0(8), with 8 suitably chosen. Unfortunately, when 8 = 1.5 
(the united atom value for this state) the calculated energies are much too low over 
almost the entire range of R-values (see Table 3). This is a reflection of the in- 
accuracy of y~o(~) as a representation of T ~ which has been noted previously [6 (t)]. 

The inclusion of X1(8) (again with 8 ---- 1.5) leads to much more satisfactory 
energies over most of the range, implying that  the approximate wave function 
including the first-order correction is more nearly orthogonal to the exact ground- 
state solution T ~ The energies calculated with ~/J~(8 = L5) are presented in 
Table 3 and are generally in close agTeement with the exact values [2, 8] up to 
R = L75 even for those few R-values where the approximate energies are still 
not bounds. For larger R-values, the differences become appreciable, but  the 
accuracy of our approximation for moderate R-values is gratifying, since Zo(8) is 
chosen to display the correct behaviour in the limit as R -~ 0. 

Variation of 8 can only lower the energies still further, and it is therefore clear 
that  we must construct a properly orthogonalized wave function to achieve bounds 
on the energy. 

5. Energy Calculations with Orthogonalized 2pa State Wave Functions 

5.1 Choice o/the Charge Parameters ~ and fl 

We have calculated ~ and fi by solving the second order secular equation, which 
results from variation of the linear parameters in the "zero order" trial wave 
function 

~ t  = a~0(~) + bZo(8). (S) 

In principle, it is possible to determine two pairs of values which separately optimize 
the energies of the isa and 2p(~ states. However, we found that  one eigenvalue of 
the secular equation is sensitive only to variations in g and the other eigenvalue is 
sensitive only to variations in 8. The resulting values of ~ and 8 are listed in Table 2. 

5.2 The lsq State Wave Function 

For the lower isa state, we have calculated energy bounds by optimizing the 
total energy through third order by varying q7 in the linear trial function (7). The 
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Table 2. Values o/ the Parameters lor the ls~ and 2pa States of Hell +~ 
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B~ ~ fl V k0 kl l m 

0.125 2.779 1.534 1.020 5.28 
0.250 2.527 ,1.621 1.077 5.23 
0.375 2.334 1.727 1.'150 4.99 
0.500 2.189 t.810 1.227 4.68 
0.750 '1.989 t .852 1.357 4.19 
1.000 t .852 '1.791 1.428 3.85 
1.250 1.745 1.697 1.439 3.62 
1.500 1.656 1.599 1.4t0 3.48 
1.750 t.579 1.508 t.360 3.4t 
2.000 1.5tl t.425 1.300 3.39 
2.500 1.395 1.286 t .177 3.46 

The internuclear separation 
b 5.28 (-1) = 5.28"10 -1. 

is2R. 

- t )  b 1.26 (-2) 2A9 
-1) 3,t5 (-2) 3.00 
- t )  4.63 (-2) 9.54 
-1) 5.64 (-2) 1.11 
-1) 6.88 (-2) -8.24 
-1) 7.22 (-2) -3.51 
- t )  6.83 (-2)  -6.88 
- t )  6.03 (-2) -9.77 
- t )  5.00 ( -2)  1.17 
-1) 3.82 (-2) -1.29 
-1) t.07 (-2)  -1.34 

-5) 7.56 (-3) 
-4) 2.29 (-3) 
-4) 3.84 (-2) 
-3) 5.26 (-2) 
-3) 7.85 (-2)  
-2) 9.78 (-2) 
-2) 1.10 ( - i )  
-2) t.t9 (-1)  
- t )  t.27 (-1)  
-1) 1.34 (-~.) 
-1) 1.52 (-1)  

resulting values of U are listed in Table 2, and the corresponding energies in Table 3. 
These energies differ very little from the best values obtained earlier [6 (l)] with 
slightly different values of cr and 7, and it is clear that  the approximate function 
T~ is an adequate representation of the exact ground state function ~0 only up to 
R =  i.5. 

5.3 Explicitly Orthogonalized 2p(~ State Wave Functions 

The unnormalized function 

where 

is orthogonal to T~. Here, W~ is given by Eq. (7) and T~ is given either by 

T~ = g0(fl), [with/C =/c  o in Eq. (9)] (l ia) 

or by 
T~ = Z0(fi) + Zl(fl), [with/C =/Cl in Eq. (9)]. (~ib) 

The energies c&lculated with these ~I  are presented ia Table 3. They are all 
bounded by the exact values, but the zero order values are very inaccurate. Much 
better accuracy results from the first order calculations, but it is clear that  we have 
obtained upper bounds at the price of a loss of accuracy over most of the range of 
R-values. The effect of orthogonalization may be seen to be small from the values 
of the constants/c o and/Cl (see Table 2), and by comparing the energies calculated 
with orthogonalized trial functions and with the corresponding unorthogonalized 
trial functions (i.e., with the same values of fi). These values are also included in 
Table 3. 

This procedure of explicit orthogonalization towards approximate ground state 
eigenfunctions was followed in earlier purely variational calculations on the 
diatomic ions [3, 7, 9]. 
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5.4 Linear Combination Wave Functions 

The unnormalized linear combinations of molecular orbitals (LC~O) 

and 

determined from solutions of a secular equation, are orthogonal for all values of 
and ft. 

Values of 1 and m are presented in Table 2, and their small magnitudes indicate 
that  ~ is dominated by W ~ and ~5~ by T~. The effect of the mixing is, as usual, to 
lower the lsa energies and to raise the 2pa energies. These energies are presented 
in Table 3. 

Judging by the energy criterion alone, ~bt~ is a slightly more accurate representa- 
tion of the ground-state wave function than T~, whereas the LCMO function ~b~ is 
apparently less reliable than the explicitly orthogonalized ~t 1 of Eq. (9). I t  should 
be noted, however, tha t  the energy differences between these approximations are 
generally much smaller than the discrepancies with the exact values. The most 
accurate energy values are actually obtained with the unorthogonalized ~ ,  but they 
are not all bounds. 

6. Other Molecular Properties: Accuracy of the Wave Functions 

The accuracy of the various approximate functions and the effects of ortho- 
gonalization have been investigated further by calculating dipole moments for both 
lsa and 2pa states, and transition matrix elements for the isr - 2pa dipole transi- 
tion. The calculated values are presented in Table 4 together with values calculated 
using the exact wave functions [i, 9, i0]. 

The accuracy of our values of the dipole moments for the 2pa state provides 
some indication of the quality of the approximate solutions for this state, but  it  is 
clear that  none of the Isa solutions is satisfactory except at very small R-values. 
We wish to emphasize that  the most accurate dipole moments were calculated 
with the LCMO functions and that  the unorthogonalized funcgons give slightly 
better results than the explicitly orthogonalized wave functions. This is in marked 
contrast with the energy calculations described above, and serves to underline once 
more the inadequency of the energy criterion as the sole test of the accuracy of an 
approximate wave function. 
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